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Abstract 

The effect of wall cooling on the two-dimensional linear stability of subsonic flows 

over two-dimensional surface imperfections is investigated. Results are presented for 

flows over smooth humps and backward-facing steps with Mach numbers up to 0.8. 

The results show that, whereas cooling decreases the viscous instability, it increases 

the shear-layer instability and hence it increases the growth rates in the separation 

region. The coexistence of more than one instability mechanism makes a certain 

degree of wall cooling most effective. For the Mach numbers 0.5 and 0.8, the 

optimum wall temperatures are about 80% and 60% of the adiabatic wall 

temperature, respectively. Increasing the Mach number decreases the effectiveness 

of cooling slightly and reduces the optimum wall temperature. 

1. Introduction 

Due to proven achievability of Natural Laminar Flow' (NLF), there is an increasing 

interest to use it for the design of high performance aircraft. The substantial drag 

reduction with NLF has promoted more analyses of ways to achieve and maintain NLF 

on airfoils and other aerodynamic geometries. The maintenance of NLF is critically 

sensitive to the location of transition, which is 

imperfections. Since many of these imperfections 
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manufacturing techniques* 3,  a guide is needed for their allowable sizes and methods 

that should be used to control their effect on NLF. 

There are some empirically based criteria in the I i t e r a t ~ r e ~ . ~  for prediction of the 

transition of flows around imperfections. But these criteria are for special cases and 

geometries, and they do not explain the instability mechanisms enhanced by the 

imperfections or the physics of ways to control them. Nayfeh, Ragab, and 

Al-Maaitah' studied analytically the stability of incompressible flows around 

two-dimensional (2-0) bulges; their method accounted for both viscous and 

shear-layer instabilities. They also correlated their results with the experiments of 

Walker and Greening7 and found that the eN method can be used to predict transition 

around 2-0 bulges. Bestek et ala solved the unsteady Navier-Stokes equations using 

finite-differences; they concluded that the unsteadiness of the separated flow can be 

regarded as a phenomenon governed by the hydrodynamic instability. Their 

calculations show that Tollmien-Schlichting waves amplify considerably once the 

separation is enhanced in agreement with the results of Nayfeh et ala . Burnel et a19 

a i d  Gougat and Martinlo experimentally investigated the flow over 2-0 imperfections. 

Their measurements of the amplified disturbances show that they damp down in the 

region of favorable pressure gradient. A similar trend is seen in the calculations of 

Nayfeh et ale. 

Recently, the effect of compressibility on the achievability of NLF has received 

more attention for non-lifting surfaces. High subsonic and supersonic Mach-number 

flows develop density gradients across the boundary layer, which provide additional 

damping to 2-0 and axisymmetric T-S waves. For certain geometricies this 

advantage can be offset by the increase in the adverse pressure gradients. Vijgen 

et all1 showed that increasing the freestream Mach number has a stabilizing effect 

on subsonic laminar boundary layers over fuselages. Their Mach number varied from 

low subsonic to 0.8. Hastings et all2 reported that NLF extended as far as 37% on a 

NLF fairing installed on a turbo fan nozzle. 

In spite of the previous investigations more understanding of the physics of the 

instability of such flows and ways to control them are still needed, especially for 

compressible flows. The two most common ways for laminar flow control are wall 

cooling in air (or heating in water) and wall suction. Wall cooling stabilizes 

incompressible flows over flat plates in air and destabilizes them in watert3-lE . 
Mack" and Malikt8 found that for compressible flows, wall cooling stabilizes the first 

mode but destabilizes the second mode. The question to be asked is how does wall 
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cooling affect flows around surface imperfections, and whether these flows can be 

stabilized by this technique, especially, since there is an interaction of more than one 

instability mechanism. 

The purpose of this work is to study the effect of wall cooling on the subsonic 

two-dimensional stability of boundary layers around two-dimensional smooth 

backward-facing steps and humps. 

Mean Flow 

The sizes of the two-dimensional imperfections under consideration are such that 

strong viscous-inviscid interactions and small separation bubbles are unavoidable. 

The conventional laminar boundary-layer formulation cannot predict such flows. An 

alternative is to solve the full Navier-Stokes equations, but in such a case the grid 

should be 50 fine that important flow characteristics are not smeared by the 

truncation error and artificial dissipation. However, due to the large number of cases 

need to be investigated, solving the full Navier-Stokes equations is a very expensive 

task. A more economical alternative is to solve the interacting boundary-layer (IBL) 

equations or the nonlinear triple-deck equations. 

We calculated the two-dimensional compressible laminar boundary layers over 

flat plates with 2-D surface imperfections using the interacting boundary-layer 

equations (IBL). The flowfield is assumed to be governed by the steady compressible 

boundary-layer equations as follows: 

x-momentum equation 

a U  a U  

8 X  8Y 
p u - +  pv-= - - 

continuity equation 

energy equation 



and equation of state for perfect gas 

where velocities are normalized with respect to the freestream velocity U,, lengths 

are normalized with respect to L', which is the distance from the leading edge to the 

center of the imperfection, and the temperature and the viscosity and 

thermal-conductivity coefficients are normalized with respect to their freestream 

values r,, p', , and K:, respectively. Here, 

t t  

R e =  U,L* ~ P, , Pr=-, k & J  andv=-  c; 

where C; and C: are the gas specific-heat coefficients at constant pressure and 

volume, respectively. 

The boundary conditions at the wall are 

u = v = 0 and T = Tw at y = c [ ( x ) ]  

where f (<)  is the shape of the wall with the imperfections. For the step 

and for the hump 

wh re x, i th 

1 -318 514 f (<)  = 7 h[1 + err(()], C = Re E. ( x  - 1) 

I h ( 1  - 12C2 + 16C3), if C 50.5 

h is th width of the hump, erf is the error fu t i  

or the hump, and ,I = 0.332057. Away from the wall 

u+U,andT+T, as y + 0 0  

where the subscript e stands for edge variables. 

height of the s 

(7) 
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Using the Prandtl transposition theorem, 

2 = y - / l-[(X)], w = v - u - df 
dx 

we rewrite Eqs. (1)-(3), (6), and (8) as 

dU c7U pu-+ pw- = - - 
c?X az 

(9) 

u = w = O , T = T ,  at z=O 

U + U e  and T + T e  as z - + m  

Next we use the Levy-Lees variables 

and transform Eqs. (10)-(12) into 

where 

2 ul 2 - ( y  - l)Mm- OF, = 0 
Te 



The boundary conditions become 

F=V=OandQ=Q, at q = O  (20a) 

To account for viscous-inviscid interactions, we need to calculate the inviscid 

flow over the displaced surface. This is done through the interaction law, which 

relates the edge velocity to the displacement thickness. Using thin airfoil theory, we 

obtain 

where f l =  d z  , the displacement thickness 3 is given by 

and a, is the inviscid surface velocity in the absence of the boundary layer, which, in 

the case of small imperfections, can be expressed as 

dt 

Defining x = f t  U,d, we rewrite Eq. (21) as 

The principal values of the integrals in Eq. (24) are assumed. 

Following Davis and Werlezo and Nayfeh et a16, we integrate the interaction law 

by parts to eliminate the derivative of x .  We assume x to vary linearly over a 

differencing interval to obtain a second-order quadratic expression for the edge 

velocity. Furthermore, we calculate the second term in Eq. (24) explicitly from the 
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previous iteration. 

Blasius flow, we can write the interaction law as 

By assuming the flow far away from the imperfection to be a 

For a definition of 

to Ref. 6. 

and i+h and a detailed derivation of Eq. (25), we refer the reader 

Equations (16)-(18) and (20) are solved simultaneously with Eq. (25) using central 

differences in the vertical direction and three-point backward differencing in the 

stream wise direction. 

Ragab, Nayfeh, and KrishnaZ1 compared the IBL calculations with solutions of the 

thin-layer compressible Navier-Stokes equations obtained using the computer code 

"ARC2D" developed at NASA Ames (Version 1.5 GAMMA). The results obtained using 

the IBL agree very well with those obtained using the Navier-Stokes solver; this is 

true for both the mean flow and the stability characteristics. In Ref. 21 insulated wall 

conditions were used. In the present work, we investigate the influence of continuous 

and strip cooling. 

. 

111. Stability Calculations 

In this work, we consider the linear two-dimensional quasi-parallel stability of the 

mean flow calculated using the interacting boundary-layer formulation. The 

quasi-parallel assumption was justified a posteriori by Nayfeh et ale. They found that 

the wavelengths of the disturbances are the order of the boundary-layer thickness. 

The calculations are performed for constant specific heats and Prandtl number. Since 

we are limiting our calculations to subsonic flows, this assumption has a small effect 

on the accuracy of the stability results. Moreover, the viscosity and 

thermal-conductivity coefficients p and K are assumed to be functions of temperature 

only. Since Pr and Ci  are constant we take K = p . 

To derive the stability equations, we superimpose 2-0 disturbances on the mean 

flow calculated using the interacting boundary-layer formulation to obtain the total 

flow quantities 
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where 1 and p appear in the definition of the bulk-viscosity coefficient k as 

2 
3 k = 1 + - p  

The subscript m refers to mean-flow quantities and the overbar refers to total flow 

quantities. Since ii and 1 are functions of temperature only, we have 

Substituting Eqs. (26) and (27) into the 2-0 compressible Navier-Stokes equations, 

subtracting the mean-flow quantities, and linearizing the resulting equations, we 

obtain 

- JP -I- urn-+- JP aPrn v + p , ( $ f + % )  = 0 
at ax  d~ 
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where 

rn =-, J r n  r = 2 + r n ,  
Pm 

The linearized equation of state for a perfect gas is 

Y M ~  = P ~ T +  PTm 

or 

The boundary conditions are 

(36) u = v = O , T = O  at y = O  

u , v , p , T - , O  as y - + ~  (37) 

Since the coefficients in Eqs. (28)-(31), (36), and (37) are functions of y only, we 

seek normal-mode solutions of the form 

q = $ ( y )  exp(i jadx - iwt} + complex conjugate (38) 

where q stands for (u, v, p, T), c1 is the wave number, and w is the frequency. For 

spatial stability analysis a is complex and o is real, whereas for temporal-stability 

analysis w is complex and a is real. In this work, we analyze the spatial stability case 

and determine w from the nondimensional frequency F as w = F/R .  
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Dropping the hat from 4 for convenience and defining 

= w - au, 

we find that a is governed by the eigenvalue problem 

iQP iQT v+--- DTm D v =  - iau + - 
Trn Prn Trn 

Prn 

- ipmLZR 
D2u = ( 

Pm 

+i-[.(- DTm + - p ' m  DT,> - aDu,]p 
Pm T, prn 

I 

(43) 

1 D2T = - 2(y - l)M;PrDu,Du + - 2i(y - l)M,PraDu, 2 v 

u, v , p ,  T, -+ 0 as y -+ 00 

where 

(45) 

(46) 



IV. Numerical Results 

Following the procedure described in section 11, we calculated the mean flow 

Figure 1 shows the over a backward-facing step for different wall temperatures. 

influence of cooling on the skin-friction coefficient 

In the case of cooling, the separation point is almost fixed but the reattachment point 

moves slightly upstream, resulting in a slightly smaller separation bubble. Moreover, 

cooling causes a larger negative shear prior to reattachment. The pressure 

coefficient C, = 2(p,Te - l ) /(yM:) is plotted in Fig. 2. Although cooling does not have 

much effect on C, far away from the imperfection, it causes steeper adverse and 

favorable pressure gradients around the separation bubble. In Fig. 3, we compare 

the mean profiles of the flows over adiabatic and cooled walls at several locations. 

In general, cooling results in fuller velocity profiles compared to the adiabatic case. 

In the separation region, although the mean-velocity profiles are still fuller away from 

the wall for the cooled wall case, they develop inflection points close to the wall, and 

more negative flows develop near reattachment. The corresponding temperature 

profiles are shown in Fig. 4. The combined effect of cooling on the velocity and 

temperature profiles is a movement of the generalized inflection point closer to the 

wall in the separation region, as shown in Fig. 5. 

. 

For a given mean flow, o, and R, we solved for the eigenvalue a and the 

eigenfunctions, and then determined the amplification factor from 

N = - JR: 2a,dR (49) 

where R, corresponds to Branch I of the neutral stability curve and a, is the imaginary 

part of a . The eigenvalue problem was solved using the second-order 

finite-difference subroutine DBVPFD22, which is much faster than SUPORTZ3; the 

results of DBVPFD are in full agreement with those of SUPORT. In all the cases, the 

results are for the most dangerous frequency, defined to be the one that results in 

an N factor of 9.0 in the shortest In the case of cooling it is the one 

resulting in the largest N factor in the shortest distance. It turns out that the most 

dangerous frequency for cooled and adiabatic wall are about the same. Figure 6 



shows the N factor for various frequencies when T,,,=0.55Ta,. It appears that 

f = 5 0 ~ 1 0 - ~  produces the largest N factor. 

We analyzed the stability of the mean profiles calculated using the IBL code for 

flows over a backward-facing step. The present analysis accounts for both viscous 

and shear-layer instabilities in the separation region. The effect of wall cooling on the 

stability of such flows is different from that on the stability of flows over flat plates. 

Figure 7 shows the growth rates for the cases of adiabatic and cooled walls. The 

temperature of the cooled wall is 55% of the adiabatic wall temperature Tad. We note 

that the instability is due to the viscous mechanism in the attached region and due 

to a combination of the viscous and shear-layer mechanisms in the separation region. 

Figure 7 shows that cooling decreases the growth rates and hence it is stabilizing in 

the attached flow regions because cooling produces fuller velocity profiles. On the 

other hand, in the separation region cooling increases the growth rates due to the 

increase in the negative shear flow in the separation bubble and the movement of the 

generalized inflection points closer to the cooled wall. However, the growth-rate 

curve corresponding to the cooled case is narrower around the peak value than that 

corresponding to the adiabatic case because the cooled flow reattaches ahead of the 

adiabatic flow. Figure 8 shows the variation of the growth rate with streamwise 

distance for different wall temperatures. Decreasing the wall temperature 

destabilizes the flow in the separation bubble and stabilizes it in the attached flow 

region. Moreover the growth-rate curve gets narrower as the wall temperature 

decreases. Consequently, the overall effect of cooling as measured by the N factor 

depends on the wall temperature, as shown in Fig. 9. When T,= 0.95Ta,. the 

boundary layer is completely stable ahead of separation and the overall N factor is 

less than that of the adiabatic wall. As 7, decreases below 0.8 Tad the increase in the 

growth rates in the separation region overcomes the reduction in the growth rates 

elsewhere, and the net result is an increase in the maximum N factor. 

. 

For a Mach number of 0.8, Fig. 10 shows the growth rates for various wall 

temperatures. The increase in the growth rates in the separation region when M, 

= 0.8 is less than that when M, = 0.5. Moreover, the peak growth rate when M, 

= 0.8 is wider than that when M, = 0.5. This makes the optimum wall temperature 

to be at T, = 0.6Tad as it is clear from the resulting N factors shown in Fig. 11. Figure 

11 also shows that at M, = 0.8 cooling has a slightly smaller effect than at M, = 0.5 . 

The previous results seem to be general and apply to other imperfections. For 

example, Figure 12 shows the growth rates for a flow at M,=0.8 around a cubic 
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hump. The hump width is 0.2 L' and height is 0.003 L'. The behavior of the growth 

rates with cooling is similar to that of the step case. The resulting N factors are 

plotted in Fig. 13. This figure shows that the optimum wall temperature is about 

T, = O.ST,,. When T, = O.ST,, the N factor is about the same as that for the adiabatic 

wall. 

In an attempt to lower the growth rates in the separation region, we performed 

calculations for a wall that is cooled everywhere except in the separation bubble. The 

results indicate that this distribution has a very small effect on the N factor as shown 

in Fig. 14. The growth rates are slightly changed as shown in Fig. 15. The reason for 

this small effect is that the mean profiles in the separated region are influenced by 

the cooling ahead of the separation bubble due to the nonsimilarity of the boundary 

layer. 

Next we show the influence of the step position on the N factors for a constant 

frequency. The results shown in Fig. 16 are for M,=0.5 and adiabatic wall 

conditions. Unlike the incompressible case the most dangerous step location is not 

the one corresponding to Branch I of the neutral stability curve, but it is the one 

corresponding to a distance half-way between Branches I and 11. Figure 17 shows 

that a similar trend is true for the cubic hump. 

From the previous results it is clear that the coexistence of viscous- and 

shear-layer instability mechanisms complicates the effect of cooling on the stability 

of such flows. Since cooling decreases the viscous instability and increases the 

shear-layer instability, there exist an optimum wall temperature that considerably 

reduces the amplification factor. 
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Figure Captions 

Figure 1. Effect of wall cooling on the shear coefficient for a flow over a 

backward-facing step when the step height = 0.003, step slope = - 4.34695, 

M, = 0.5, Re = 1.0x108, and Pr = 0.72: - T w / T a d  = 1.0, - - , TWITad = 

0.8, and - - - TWITad = 0.55 . 

Figure 2. Effect of wall cooling on the pressure coefficients for a flow over a 

backward-facing step when the step height = 0.003, step slope = -4.34695, 

M, = 0.5, Re = 1.0x108, and Pr = 0.72: - TWITad = 1.0, - - TWITad = 0.8, 

and - - - Tw/Ta,, = 0.55 . 

Figure 3. Effect of wall cooling 01, the streamwise velocity profiles along the plate 

when the step height = 0.003, step slope = -4.34965, M,=0.5, 

Re = l.0x108, and Pr = 0.72. The profiles correspond to the following values 

of R starting from left to right: 985, 992, 997, 1012, 1027, 1037, 1042, and 

1051. The separation bubble for the cooled wall starts at R = 997 and ends 

at R = 1037: - Tw/Tad = 1.0, and - - - Tw/Tad = 0.55. 

Figure 4. Effect of wall cooling on the temperature profiles along the plate when the 

step height = 0.003, step slope = -4.34965, M, = 0.5, Re = 1.0~10~.  and Pr 

= 0.72. The profiles correspond to the following values of R starting from 

left to right: 985, 992, 997, 1012. 1027, 1037, 1042, and 1051. The separation 

bubble for the cooled wall starts at R = 997 and ends at R = 1037: 

Tw/Tad = 1.0, and - - - TWITad = 0.55. 
- 

Figure 5. Variation of the inflection point across the separation region for adiabatic 

and cooled-wall conditions when the step height = 0.003, 

step slope = - 4.34695 , M, = 0.5, Re = 1.0x108, and Pr = 0.72: - 
TWITad = 0.8, and- - - TWITa, = 1 .O. 
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Flgure 6. The influence of the frequency on the N factor when T, = 0.55 T,,,, step 

height = 0.003, step slope = - 4.34965, M, = 0.5, Re = ~ O X I O - ~  , and Pr = 

0.72: - f =40x10-6,--- F = 6 0 ~ 1 0 - ~ ,  and -.. F=50xlO-e. 

Figure 7. The growth rates for the flow over cooled and adiabatic walls when the step 

height = 0.003. step slope = - 4.34965, M, = 0.5, Re = 10xlOe, Pr = 0.72, 

and F = 5 0 ~ 1 0 - ~ :  - TWITad = 1.0 and - 0 .  TWITad = 0.55. 

Figure 8. Variation of the growth rates with wall temperature: step height = 0.003, 

step slope = - 4.34695, M, = 0.5, Re = l.OxlOE, Pr = 0.72, and F = 

50x1 0-e, 

Figure 9. Variation of the amplification factor with wall temperature: step height = 

0.003, step slope = - 4.34695, M, = 0.5, Re = l.OxlP, Pr = 0.72, and F 

= ~ O X I O - ~ .  

. 

Figure 10. Variation of the growth rates with wall temperature: step height = 0.003, 

step slope = - 4.34695, M, = 0.8, Re = l.OxlOe, Pr = 0.72, and F = 

50x 1 O-6. 

Figure 11. Variation of the amplification factor with wall temperature: step height = 

0.003, step slope = - 4.34695, M, = 0.8, Re = l.OxlOE, Pr = 0.72, and F 

= 50x10 

Figure 12. Variation of the growth rates with wall temperature for a cubic hump: hump 

height = 0.003, x, = 0.2, M, = 0.8, Re = l .OxlOe, Pr = 0.72, and f = 5 0 ~ 1 0 - ~ .  

Figure 13. Variation of the amplification factor with wall temperature for a cubic hump: 

hump height = 0.003, x,  = 0.2, M, = 0.8, Re = l.OxlOe, Pr = 0.72, and F 

= 5OxlO-*. 
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Figure 14. Effect of an adiabatic separation region on the amplification factor: step 

height = 0.003, step slope = - 4.34695, M, = 0.5, Re = l.OxlV, Pr = 0.72, 
cooled and F = 50~10-~: - adiabatic wall, - 0 .  TWITad = 0.8, - - - 

everywhere except in separation region. 

Figure 15. Effect of an adiabatic separation region on the growth rates: step height 

= 0.003, step slope = - 4.34695, M, = 0.5, Re = l.OxlP, Pr = 0.72, and 

F = 50x10-' : - adiabatic wall, -=. TWIT,, = 0.8, - - - cooled everywhere 

except in separation region. 

Flgure 16. Effect of step location on the amplification factor: step height = 0.003; step 

slope = - 4.34695, M, = 0.5, Re = l.OxlV, Pr = 0.72, and F = 5 0 ~ 1 0 - ~ .  

Figure 17. Effect of hump location on the amplification kctor: bump height = 0.003, 

hump width = 0.2, M, = 0.5, Re = 1.0x108, Pr = 0.72, and F = 50x10-* . 
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